
1. Introduction
Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) have measured 
Earth's monthly mass redistribution with a spatial resolution of up to 300  km for over 20  years (Landerer 
et  al.,  2020; Tapley et  al.,  2019). This extensive record of time-variable gravity (TVG) has transformed our 
understanding of mass transport in the hydrosphere, cryosphere, and solid Earth. At the largest scales, these 
missions have quantified ice loss in Greenland and Antarctica as well as provided an independent record of global 
ocean mass (Chen et  al.,  2020; Velicogna, 2009). The 2018 Earth Science Decadal Survey identifies Earth's 
mass change as a designated observable and highlights the need to maintain continuous, accurate measurements 
(National Academies of Sciences, Engineering, and Medicine, 2018).

Concurrently, satellite laser ranging (SLR) has served as a fundamental technique for satellite ephemeris esti-
mation, gravity field observation, and reference frame determination for over 50 years (Pearlman et al., 2019). 
SLR has remained a favored technique due to its simplicity with the fundamental observable being the roundtrip 
travel time of a laser pulse. Additionally, SLR satellites are relatively cheap as they are passive spheres covered 
in corner cube reflectors. Their orbital lifespan is on the order of decades due to their low area-to-mass ratio, 
which makes them robust to non-conservative perturbations (e.g., atmospheric drag and solar radiation pressure). 
SLR has long supported TVG observation because of the accuracy with which it measures the long wavelength 
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components of the gravity field (Yoder et al., 1983). These low-degree observations are important as they capture 

large-scale geophysical processes. 𝐴𝐴 𝐴𝐴2

(
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)

 , for example, describes Earth's oblateness and can change 
over short timescales due to ice sheet melting (Nerem & Wahr, 2011). Loomis et al. (2020) quantified improve-
ments to Antarctic mass flux from substituting SLR-derived C3,0 into the GRACE solution. Other low-degree 
coefficients have been shown to influence terrestrial water storage estimates (e.g., Chen et al., 2005).

Following GRACE's launch, it became apparent that estimated C2,0 values contained an anomalous ∼161-day 
signal that lacked a geophysical basis. The signal likely originates from temperature dependent cross-track accel-
erometer errors related to the β′ angle of the satellites' orbit (Cheng & Ries, 2017). Since October 2016, GRACE 
and GRACE-FO have also had degraded estimates of C3,0 owing to their operation in single accelerometer mode 
(Loomis et al., 2020). These accelerometers are critical for removal of non-conservative accelerations in data 
processing. In all but one of its final 7 months GRACE-B operated without its accelerometer to reduce power 
needs, requiring the use of an algorithm to transplant data from the functioning satellite (Bandikova et al., 2019). 
With GRACE-FO, one of the satellites has an underperforming accelerometer that necessitates the use of a simi-
lar transplant routine (Landerer et al., 2020). To maintain accuracy, it has become standard practice to replace 
C2,0 and C3,0 with SLR-derived values released as Technical Notes, the most recent of which, TN-14, contains 
C2,0 values since 2002 and C3,0 values since the 2012 launch of Laser Relativity Satellite (LARES; Loomis 
et al., 2020).

To mitigate the impact of the high correlation between C2,0 and C4,0, Loomis et al. (2019) forward modeled a 
GRACE-derived TVG model during data processing. Additionally, Loomis et al.  (2020) showed that LARES 
serves an essential role in SLR-derived C3,0 estimates due to its inclination, altitude, and area-to-mass ratio, even 
though LARES's primary mission is to measure relativistic phenomena (Ciufolini et al., 2012). In light of these 
recent advances, we seek to further the capability of SLR as a tool for TVG estimation. We therefore investigate 
a potential future SLR satellite with a focus on recovering monthly hydrology and ice signals. A constellation of 
seven existing orbiting satellites is simulated to establish a baseline solution representative of SLR's current limi-
tations. We then simulate a hypothetical satellite placed at a fixed altitude across a range of inclinations. Within 
the closed-loop simulation environment, we assess the impact of the new satellite by comparing it to the baseline 
solution and known truth. Our results demonstrate that enhancing the current constellation's geometry with a 
low-inclination satellite decorrelates the even zonals and improves their independent recovery.

2. Methods
2.1. Simulation Configuration

Our procedure follows established methods to simulate mass-change missions (Loomis et  al.,  2012; Wiese 
et al., 2012, 2022). Table 1 reports the force models used in this study. In the first step, a set of truth observations 
are generated using a set of truth force models. Gaussian noise with 1 cm standard deviation is then added to these 
truth station-satellite range data. These noisy data are processed in a nominal run in which the normal equations 
are formed with a set of nominal force models. The difference between the truth and nominal models represents 
the uncertainty in the process. We use NASA/GSFC's orbit determination and parameter estimation software 
GEODYN to simulate observations and calculate partial derivatives (McCarthy et al., 2015).

The GOCO06s model defines the static gravity field (Kvas et al., 2021). Errors in the static gravity field are not 
considered since TVG is the primary signal of interest. Ocean tides are defined by the Empirical Ocean Tide 
(EOT) Model 11a in the truth case and the Finite Element Solution (FES) 2014 model in the nominal case (Lyard 

Force Truth model Nominal model

Static gravity GOCO06s GOCO06s

Ocean tides EOT11a FES 2014

Non-tidal atmosphere and ocean ESA ESM A+O ESA ESM DEAL+AOerr

Hydrology and ice ESA ESM H+I None

Table 1 
Simulation Force Models for Truth and Nominal Cases
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et al., 2021; Savcenko & Bosch, 2012). Non-tidal atmospheric and oceanic variability forms a major error source 
for mass change missions due to undersampling and subsequent temporal aliasing of these high frequency signals. 
Because hydrology and ice signals are of interest in TVG analysis, the high frequency non-tidal effects are 
removed through an atmosphere and ocean dealiasing model, such as AOD1B (Dobslaw et al., 2017). To simulate 
these AOD errors we use the A and O components of the simulation-specific ESA Earth System Model (ESM) 
(Dobslaw et al., 2015). A realistically perturbed dealiasing model is given by DEAL+AOerr coefficients, which 
contain processes omitted by AOD1B and true errors across large and small scales (Bergmann-Wolf et al., 2015). 
Finally, the hydrology (H) and ice (I) signal is defined only in the truth run by ESA ESM H+I coefficients 
(Dobslaw et al., 2015). The nominal run uses no a-priori hydrology and ice model as this is the signal we seek to 
recover in the simulation.

2.2. Satellite Modeling

We simulate 7 SLR satellites (“SLR7”; Table  2) over 12  months in 7-day arcs: LAGEOS-1/2, Starlette, 
Stella, AJISAI, Larets, and LARES. We do not consider Beacon-C due to its irregular shape and sensitivity to 
non-conservative forces. This is consistent with the satellites and arc lengths used in the generation of Technical 
Note 14 (Loomis et al., 2020). All SLR satellites are defined with a truth drag coefficient CD equal to 2. Our arc 
parameterization is based on Zelensky et al. (2014), with modifications for a simulation environment. No CD are 
estimated for LAGEOS-1/2 due to their high altitude. For Starlette, Stella, AJISAI, Larets, and LARES, and the 
new satellite, CD are estimated daily. A constant along-track term is estimated every 3.5 days for both LAGEOS 
satellites. We do not estimate other empirical accelerations as these parameters absorb gravity signals. Solar 
radiation pressure is modeled with the coefficients of reflectivity CR listed in Table 2. The new satellite is given 
an area-to-mass ratio equal to that of LARES. At the end of each individual arc, partials for the arc parameters 
(e.g., satellite state, drag) and global parameters (Stokes coefficients for a 5 × 5 + C/S6,1 field) are output. For 
each month, we combine 4 7-day normal equations from each satellite using the predefined weights in Table 2 
(Sośnica et al., 2015). We use NASA/GSFC's Ncombine/Nsolve software packages to perform the combination 
and final inversion of the normal equations.

To narrow the search space for a new satellite, we fix all orbital elements except for inclination. The longitude 
of the node and mean anomaly will minimally impact the satellite's TVG sensitivity and are not considered a 
parameter of interest. We define the orbit as circular, which is the case for all the SLR7 except Starlette. For 
altitude we fix the new satellite at LARES's altitude (1,440 km). We simulated lower altitude cases and found 
the solution lacked sensitivity to this parameter. Lower altitude primarily affects sensitivity to short-wavelength 
features, whereas the low-degree SLR solutions recover long wavelengths. The selected altitude balances station 
observability, TVG sensitivity, and atmospheric drag. Inclination is varied from 10° to 170° in 5° increments. As 
the satellite approaches an equatorial orbit, fewer stations can observe it and thus we do not consider inclinations 
below 10°.

Figure 1 shows a map of the SLR ground stations used in this study and the groundtrack of observation points to 
the SLR7 for a single month. To accurately model tracking statistics for the SLR7, we use real data files for the 
12 month period beginning 6 January 2019 to determine observation quantities and stations. For the hypothetical 
satellite, 6-hr sampled total cloud cover (TCC) data from NCEP/DOE Reanalysis II are used to impose tracking 

LAGEOS-1 LAGEOS-2 Starlette Stella Ajisai Larets LARES New

Altitude (km) 5,860 5,620 800–1,100 810 1,500 690 1,440 1,440

Inclination (°) 110 53 50 99 50 98 70 10–170

Est. drag coef. CD None None Daily Daily Daily Daily Daily Daily

Est. constant along track 3.5 days 3.5 days None None None None None None

Reflectivity coef. CR 1.146 1.111 1.134 1.125 1.040 1.003 1.105 1.105

Relative weighta 1.0 1.0 0.16 0.16 0.10 0.07 0.28 0.28

 aWeights for SLR7 are from Sośnica et al. (2015) and are normalized to LAGEOS-1.

Table 2 
Summary of Satellite Orbits and Estimated Parameters
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statistics (Kanamitsu et al., 2002). After generating all possible passes, we discard those where the fraction of  sky 
covered exceeds two-thirds at the observing station and pass time. If the cloud cover is sufficiently low, we run a 
Bernoulli trial with probability (1-TCC)/2.5. On a success, a fraction of the pass is observed up to (1-TCC) and 
otherwise it is discarded. We determined the 2.5 downscaling factor empirically by calibrating the number of 
observations to a simulated LARES to approximately match the actual number. The downscaling simply means 
that factors other than weather impact the observability of a pass (e.g., staffing, maintenance). This downscaling 
agrees with Glaser et al. (2019) who also used TCC data albeit with a different pass-selection scheme. A 15° 
elevation cutoff is used for all satellites. The number of simulated observations to the new satellite varies with 
inclination, with the mean number of monthly observations ranging from about 1,200 to 6,000. The number of 
observations drops from about 4,000 to 2,000 for a satellite inclined at 40° versus 20°, respectively. LARES, for 
example, averaged 5,416 ± 1,172 observations per month over the simulation timespan. The variability is due to 
the previously described observability factors. We do not model station velocities and therefore do not estimate 
station positions. Likewise, we do not estimate station-specific biases.

3. Results and Discussion
Here we report results for a 12 months simulation of a new satellite placed at 1,440 km altitude and varied incli-
nations. Figure 2 reports the percent improvement in the RMS of the difference between the truth and estimate 
with respect to the SLR7 solution. The even zonals (Figure 2a) show large improvements with the addition of 
a low-inclination satellite in both prograde and retrograde configuration. The maximum RMS error reduction 
is 75% at 30° and 88% at 20° and 25° for C2,0 and C4,0, respectively. With a new satellite placed above 45° 
inclination, the observed improvements rapidly diminish. For the odd zonals a low-inclination satellite gener-
ally reduces the RMS with a lower magnitude than with the even zonals. The constellation better recovers C5,0 
with the addi tion of a satellite up to 30° as well as between 55° and 75°, with the latter range being only a few 
percent better than the SLR7. We observe a similar pattern with C3,0, although the lowest inclinations (≤20°) do 
not improve the sensitivity to this coefficient. For C3,0 and C5,0, the largest reductions are 65% at 30° and 58% 
at 25°, respectively. Figure 2b reports the percent improvement in the RMS of truth minus estimate to the Cn,1 

Figure 1. Groundtrack of observation points to SLR7 for the month beginning 28 April 2019 with ground stations shown as black triangles.
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coefficients. As with the zonal coefficients, the even degrees show a distinct pattern in that they benefit most from 
a new satellite at ≤40° prograde inclination. With respect to the direction of motion, the even degrees are slightly 
asymmetric as a retrograde satellites shows improvements to ≤50°.

Figure 3 reports the timeseries of all coefficients in the solution for the truth, SLR7 estimate, and SLR7+30° 
estimate. From this figure, we see the new satellite most affects the even degree zonals and order 1 terms in an 
absolute sense. Particularly interesting is the recovery of C4,0, where the SLR7 overestimates the annual variabil-
ity and the addition of a low-inclination satellite dramatically reduces the error. The C4,1 term similarly benefits 
from the addition of the hypothetical satellite, as does S4,1 to a lesser magnitude. Although the odd zonals show 
minor improvements with a new satellite, the SLR7 already recovers them reasonably well with LARES in the 

Figure 2. Percent improvement in RMS of difference between truth and estimate with respect to SLR7 for (a) zonal 
coefficients and (b) Cn,1 coefficients. Green bars highlight an improved (reduced) RMS and red bars show an increased RMS.
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solution as noted in previous work (Loomis et al., 2020; Sośnica et al., 2015). In other estimated parameters, the 
changes from the new satellite are generally small compared to the SLR7 solution.

Due to SLR's low observation numbers and inhomogeneous tracking (Figure 1), its utility as a TVG tool remains 
limited to low-degrees. Certain low-degree coefficients display high correlations, especially terms of the same 
order and parity as seen in the mean values in Figure 4. This figure shows the addition of a low-inclination satel-
lite strongly impacts the correlations. With a satellite added at 25–30° inclination, the even zonals and order 1 

Figure 3. Timeseries of all coefficient values for truth (black), SLR7 estimate (red), and SLR7+New estimate (blue), where the new satellite is at 30° inclination.

Figure 4. Twelve-month mean correlation coefficient for SLR7+New (triangles) and SLR7 (dashed line).
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terms show a near total decorrelation. The even zonals show a minimum correlation of 𝐴𝐴 𝐴𝐴
𝐶𝐶20,𝐶𝐶40

slr7+30◦
= −0.07 . This 

is nearly an order of magnitude lower than the SLR7 correlation, 𝐴𝐴 𝐴𝐴
𝐶𝐶20,𝐶𝐶40

slr7
= −0.6 , and has wide implications for 

SLR's ability to independently estimate C2,0 and C4,0. The same hypothetical satellite mitigates the correlation 
of the odd zonals, but they still show joint-variability with 𝐴𝐴 𝐴𝐴

𝐶𝐶30,𝐶𝐶50

slr7+30◦
= −0.29 . Note that while correlations are an 

indicator of solution quality, they do not depend on the actual data. However, our results show the effect of a 
low-inclination satellite seen in Figure 4 appears to follow the patterns in Figure 2.

Recovery of the annual variability is one way to examine the science value of our results. Figure 5 shows spatially 
the errors (with respect to truth) in the sine component of the annual variation computed to degree and order 
5. The SLR7 displays the largest errors at near-equatorial latitudes, especially over the Amazon where there 
exists a large annual signal. The area-weighted RMS of the error is reduced by up to 41% with the addition of a 
low-inclination satellite. From Figure 5 it is apparent that a low-inclination satellite mitigates areas of high error 
seen in the SLR7 solution. A satellite placed at ≥45° adds less information and does not impact the solution as 
strongly. Small improvements of ∼10% are seen with a new satellite between [70° and 80°]. Looking at Table 2, 
a low-inclination satellite would add significant geometric diversity whereas a mid to high-inclination satellite 
does not contribute as much new information.

4. Conclusions
We have conducted a novel analysis of a hypothetical future SLR satellite to improve low-degree gravity recovery. 
When estimating a 5 × 5 + 6, 1 gravity field, our results demonstrate significant improvements with the addition 
of a low-inclination SLR satellite (<∼45°). Despite the limited number of low-latitude ground stations, our simu-
lations show sufficient tracking data can exist to a potential low-inclination satellite. The low-inclination satellite 
most significantly reduces errors for the even degree zonals and order 1 coefficients. The correlations between 
these coefficients are also reduced by up to an order of magnitude with the low-inclination satellite. We have 
shown that this allows for better separability during estimation. Reducing errors in the low-degree coefficients 
has important implications for ocean mass, ice flux, and terrestrial water storage estimates. We find that a new 
SLR satellite can better recover part of the annual variability by up to 40% compared to the current SLR7. The 
independent determination of these coefficients remains essential to support accurate mass change observations 
from GRACE-FO. While launching a single new satellite will significantly benefit the SLR constellation, future 
studies could explore the addition of multiple new SLR satellites. We also plan to use our simulation setup to 
investigate the impact additional ground stations will have on TVG recovery.

Data Availability Statement
The data in this work were generated and processed with GEODYN and Ncombine/Nsolve provided by the NASA/
GSFC. SLR data are obtained from the NASA's space geodesy archive, CDDIS (https://cddis.nasa.gov/archive/
slr/data; access instructions: https://cddis.nasa.gov/Data_and_Derived_Products/CDDIS_Archive_Access.html). 
Total cloud cover data are obtained from the NOAA Physical Sciences Laboratory (https://psl.noaa.gov/data/
gridded/data.ncep.reanalysis2.html).
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Figure 5. Error in the sine component of the annual variation computed to degree and order 5 expressed in mm geoid. Shown are results for the SLR7 (top left) and 
SLR7+New for all prograde inclinations.
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